Analysis of the results using dimensionless numbers gives the calculational dependence

dm :CRE"M’”. 1)

The values of the constants ¢, n, and m are given in Table 1.

Thus, the experimental results obtained demonstrate that there is a significant change in the extent to
which the gas velocity and the particle concentration affect the heat-transfer coefficient of a disperse current
on passing from laminar to turbulent flow. In a number of cases this may be the main cause of the discrepancy
between results obtained by different workers.

NOTATION
I is the concentration of solid particles in air, kg/kg;
oy is the heat-transfer coefficient of air, W/m?- °C;
Cm is the heat-transfer coefficient of mixture of air and solid particles, W/m?-°C;
Recrl is the Reynolds number characterizing the change from laminar to transitional flow;
Recr, is the Reynolds number characterizing the change from transitional to turbulent flow.
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HEAT AND MASS TRANSFER OF LARGE DROPLETS
IN HIGHLY TURBULENT FLOWS

R. S. Tyul'panov UDC 536.422.4

A model is proposed for the heat and mass transfer of spherical bodies and large droplets in a
strongly turbulent gas flow, when the scale of the turbulence is larger than the diameter of the
body. Theoretical formulas are compared with experimental results.

The motion of a droplet in a gas flow in different kinds of technological equipment, including power in-
stallations, is accompanied by evaporation and by heat exchange with the surrounding gaseous medium. For
large drops which are not involved in turbulent velocity pulsations, when the flow is characterized by the condi-
tion L >d (L is the scale of the turbulence and d is the diameter of the body), the heat and mass transfer have
certain specific properties.

In a number of works on the heat and mass transfer of a body in a gas flow, the processes appearing in
the above conditions were found to be strongly influenced by the intensity of turbulence s,

For a cylinder, the maximum value of Nu was observe_d for L/d = 1.6, and on this basis a resonance
theory of transfer was developed [1, 10].
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Fig. 1. Scheme of variation of Nu with change in flow
velocity (g > 0.04, L/d > 1, 40 < Re' <1000): a) bound-
arylayer; b) back region; I) steady transfer in back
region; II) change in velocity vector and boundary-
layer breakaway; III) nonsteady transfer in back re-
gion; IV) change in velocity vector and boundary-layer
breakaway; etc.

On the other hand, for the mass transfer of spherical bodies and droplets in an air flow, it was found that,
if L >d and £ > 0.04, the dependence of Nu on Re’ in the range Re' = 40-1000 is comparatively simple [2]:

Nu =2871"Re". @)

In this case no extremum was observed in the dependence of Nu on LA, which disagrees with resonance
transfer theory for a spherical body.

At the time, no explanation could be found for this lack of any significant effect of the mean relative flow
velocity at large &

Physical models of the processes occurring for L < d, when turbulence of the flow has a marked effect
on the heat and mass transfer of a body, have already been developed, and no further consideration will be
given to this case.

L. It is now possible to formulate more clearly the physical picture of heat and mass transfer of a droplet
for L >d. A droplet moving in a gas flow fairly rapidly acquires a velocity equal to the mean flow velocity,
and under these condtions the role of turbulent pulsations may be taken to be determining. If the droplet
nevertheless has a velocity different from the mean flow velocity, then for comparatively large drops a back
eddy region is formed. For small turbulent pulsations of the velocity, the transfer process does not much de-
pend on the velocity pulsations. If the turbulent pulsations of the flow velocity are large, so that 20 < du'/v <
1000 for individual pulsations, the oscillating velocity leads to periodic breakaway of the boundary layer from
the drop, emptying of the accumulated layer of transfer substance (heat or mass), especially in the back re-
gion; and displacement of the back region. In this case, the transfer process occurs throughout under unsteady
conditions and considerably exceeds the transfer when a steady state has been established.

This mechanism of the effect of flow~velocity pulsations on the transfer process, shown schematically in
Fig. 1, will be realized if

Tres < Tp << Tst- @)

Making some estimates, it appears that such a mechanism is a real possibility for the heat and mass
transfer of -a droplet in a turbulent flow. The formation of a boundary layer, up to its breakdown, occurs in a
time Tpeg=0.2d/U [3], which is less than 10~° sec for a drop of diameter d = 100 u and flow velocity U = 20 m/
sec. Therefore, for turbulent flow with mean pulsation 2000-5000 sec™! in the usual technical apparatus, the
characteristic pulsation time is Tp = 0.2-0.5° 1073 sec, i.e., much larger. In addition, the setting up of steady
conditions of transfer, owing mainly to the presence of the back region, occurs in approximately the same time
Tgt = 1073 sec, as indicated by calculations according to [4].
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Fig. 2. Generalized dependence of log Nu on log Re!* for
“spherical bodies (e > 0.04, L/d > 1): I) region of experi-
mental points for the mass transfer of a fixed ball of
naphthalene [2]; a) evaporation of ethyl alcohol droplet
moving in a gas flow; b) {12]; ¢) {i1] (heat transfer of a
sphere); II) region of experimental points for heat trans-
fer in the presence of mass transfer [13].

For 7= 107% sec, the ratio of the values of Nu for nonsteady and steady transfer is Nu/Nugy = 10.

The model developed in the present work for a sphere of mean relative velocity leads to the following
polynomial, taking transfer under steady and nonsteady conditions into account:

Nut = 2 + 4,Re"5Pr0-38 4 A Re'™ (%)llPrk )

where Aj and A, are numerical coefficients.

The first two terms in the right-hand side correspond to steady transfer, and the third corresponds to
nonsteady transfer, of a spherical or almost-spherical body of droplet type.

It is evident from the analysis (Fig. 1) that in certain cases the last term may be dominant. For the ex-
ample considered, the {raction of vapor (or heat) liberated in nonsteady transfer exceeds by a factor of 3~5 the
fraction liberated in steady transfer of the drop in the gas flow.

II. Since the first papers on this subject were published, there has been a convincing accumulation of ma~
terial confirming that turbulent pulsations have a pronounced effect on transfer processes under specific condi-
tions, when the scale is larger than, or comparable with, the dimensions of the spherical body, over various
ranges of the parameters [9, 12, 13]. Admittedly, there have been investigations in which no such strong effect
of turbulence was observed for L ~ d [15].

Formerly, many investigators tended to the view that the resonance theory developed for the heat trans-
fer of a cylinder is also valid for the heat and mass transfer of a sphere. Recently, however, experiments [8
9] have shown conclusively that the resonance theory cannot be applied to the sphere, since there is no maxi-
mum in the experimental values of Nu with increase in the scale of turbulence L, and the patterns of the flow
past a sphere and a cylinder under highly turbulent conditions are significantly different [8, 14]. In [9, 13} it
was shown experimentally that the important condition of increase in Nu for a sphere is that L. > d, as our
theory predicts. The conclusion that resonance theory is not valid for a sphere also appears in the review [5].
At the same time, the majority of expe rimental observations confirm the role of unsteady transfer in the total
heat and mass transfer of spheres and droplets in a flow. Only when L > d is the first part of Eq. (2) valid for
turbulent pulsations:

*

Tres& Tp, since  tp~ L.

While there may be a dependence of Nu on L/d for a sphere, it is weak, and in a number of problems it
may be neglected.

1151



III. In considering the evaporation of drops over a restricted range of Re', €, and L/d in a gaseous me-
dium (Pr = 1), it may be convenient to use an equation simpler than Eq. (3) — an equation of the type (1). To
obtain such an equation, an analysis of the experimental data of [2] in the coordinates log Nu = f(log Re') is
shown in Fig. 2, together with experimental results on the evaporation drops of ethyl alcohol obtained on appa-
ratus similar to that described in [2] and also other experimental data on the heat transfer of a sphere [11, 12].

For the simultaneous heat and mass transfer characteristic of the evaporationofdrops of a gas flow or a
flame, discrepancies were obtained in the dependence Nu = f(Re) for different values of the injection parameter.
With increase in the intensity of the turbulence & < 0.05, these deviations considerably decrease and simul-
taneously there appears a sharp dependence of Nu on ¢; for smaller g, this dependence is very weak [13]. This
completely agrees with the experimental results of [2]. Experimental results of [13] for the heat transfer of a
sphere when & = 0.05 are shown in Fig, 2 for various values of the injection parameter n= M/pU = 0.1-0.6,
where M is the mass flow of material per unit surface of the sphere and pU is the mass flow of washed gas.

Despite the scatter, it is very significant that, within +25%, all the points corresponding to experiments
carried out for Re' = 20-1000, i.e., under conditions such that the back region plays a very important role in
transfer processes, and for € > 0.04 and L >d lie close to the straight line given by Eq. (1). Although Eq.(1)
is a finite approximation, it suffices for calculations on the evaporation of drops in flows with large turbulent
pulsations.

IV. From Eq. (1) it appears that if other flow and droplet parameters are held constant, the coefficient
of heat or mass transfer is proportional to the mean-square pulsation velocity to the power 0.5. This figure
was obtained experimentally; the model of nonsteady transfer that has been developed predicts only that it will
be less than unity.

Since turbulent flow is characterized by a spectrum of velocity pulsations, while boundary-layer break-
away is only observed at a specific amplitude of pulsations, increase in the mean-square pulsational velocity
will be accompanied by an increase in the fraction of pulsations that contribute to breakaway, determined by
the spectral curve of the turbulence. For small wave number k, the spectrum corresponds to the law E{k) ~
E%k [10]. It is precisely that region of small k, where E (k) ~ E?k and where both the scale of the turbulence
and the amplitude of the velocity pulsations are comparatively large, that is significant in the process of
boundary-layer breakaway. Here E = Lu is the coefficient of turbulent viscosity.

We denote by ul. the minimum velocity pulsation that leads to boundary-layer breakaway on a droplet or
spherical particle. In accordance with thelawassumedfor smallk, u‘br ~ E(K) is related to the frequency f},y cor-
responding to this velocity (or the wave number kpy ~ fy) by the relation

ul;z
for ~ _Ezt* 4)
The number of breakaways of the boundary layer from the drop, determining the magnitude of the nonsteady
transfer, is
o | e
up
N | tr= | () | ®)
For
The maximum frequency f, satisfies the condition 1/f, = Tpeg; A=const; L, uf,. and f; are constants deter-

mined by the geometry of the system. Therefore, for the variation of the mean-square pulsational velocity u
(or & for a given value of the mean velocity U),

Mor = C— Bjut, ©6)
where C = const and B = const.

Assuming that nonsteady transfer begins to appear at & > 0.04, while Ny, = 0 for & = 0.04, the constant C
can be determined from B and u when & = 0.04 by the relation C = B/u“8 — 004" Approximating Npy in powers of u
gives

Ny = Lw—8B _ const u™. (7)
Depending on the specific values of the constants C and B, which are always finite and positive, variation

in Ny, and hence also in the magnitude of the nonsteady transfer, will accompany variation in u; however, it is
evident from Eq. (7) that m should always be less than unity.
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From what has been said it appears that Eq. (1) can only be used for certain characteristics of the fre-
quency spectrum of the oscillations of a flow or jet corresponding to developed turbulence,

Recent experiments have shown that frequency spectra in flames are analogous to the spectra of turbu-
lent pulsations in cold flows with developed turbulence, the scale being of the same order [7]. Further experi-
mental confirmation is given in [6]. Therefore, Eq. (1) may also be applied to flames.

While the suggestions offered in the present work allow a number of features of the empirical formula in
Eq. (1) to be explained, the quantitative theory of the heat and mass transfer of a sphere or droplet in a flow
with large turbulent pulsations of the velocity stands in need of considerable further development.

NOTATION

d is the body diameter;

L is the integral scale of turbulence;

£ is the intensity of turbulence;

U is the mean velocity of flow relative to body;

u' is the pulsational velocity of flow;

u is the mean-square pulsational velocity;

v is the kinematic viscosity;

T is the time;

Tres is the time of residence (between formation and breakaway) of hydrodynamic boundary layer on drop;
o is the characteristic pulsation time of flow;

Tst is the time to establish steady transfer;

Nu is the Nusselt number;

Re is the Reynolds number;

Re! is the Reynolds number based on mean-square pulsational velocity of flow and body diameter;
Pr is the Prandt! number;

M is the mass flow per unit surface area of sphere;

fo} is the density;

uhp is the minimum pulsational velocity leading to boundary-layer breakaway;

f is the pulsational frequency;

Npr is the number of boundary-layer breakaways in unit time;

k is the wave number;

E (k) is the function describing pulsational energy spectrum;

g, fyy are the maximum and minimum pulsational frequencies leading to boundary-layer breakaway.
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